

Présentation of the Quantum Simulations axis

www.sirteq.org

Board members of the Quantum Simulations axis

www.sirteq.org

Quantum simulations	
Hélène Perrin	LPL – Paris-Nord
Pascal Simon	LPS – Paris-Sud
Jacqueline Bloch	C2N – Paris Saclay
Antoine Browaeys	LCF – IOGS
Giuliano Orso	LMPQ – Paris Diderot

Members:

Qsim = 17 laboratories, 42/48 groups, 120/150 permanent researchers, 250/300 members in total.

Objectives of the Quantum Simulations axis

www.sirteq.org

What is quantum simulation?

Simulating Physics with Computers Richard P. Feynman 1981-82

Initial problem:

Classical computers are unefficient for simulating many interacting particles

→ Exponential growth of the Hilbert space

Basic idea:

Build a well-controlled system emulating a given Hamiltonian Measure its properties: ground state EOS, excitation spectrum...

Non universal → easier than the universal quantum computer

Learn more: DIM SIRTEQ + GDR Atomes Froids organize the International Conference on Quantum Simulation, Paris 13-17 November 2017

www.sirteq.org

Relevant topics that can be simulated

Equilibrium quantum systems, bulk or lattice

Phase diagrams, eq of state, superconductivity and spin imbalance, superfluidity

Out-of-equilibrium systems and quantum quenches

Transport and dissipation, Kibble-Zurek scenario, many-body localization

Quantum magnetism

Individual particle detection, lattices systems, frustration, impurity problems

Topological systems

Quantum Hall effect, spin-orbit coupling, gauge fields, Majorana fermions, link with quantum computation

Simulation of lattice gauge theories

Abelian or non-Abelian Higgs mechanism

Theory

Preparation, measurements, dissipation and entanglement Thermalization of isolated Q-systems, quenches, entanglement growth

Highlights

www.sirteq.org

Rydberg atoms – Quantum Simulation with arrays of coupled qubits

- → Single atoms in configurable optical traps
- → Addressed, manipulated individually
- → Switchable interaction using Rydberg states
- \rightarrow Up to 50 atoms, in 2D ans 3D

sorting atoms with an optical tweezer

LCF (see also LKB)

D. Barredo et al., Science 354, 1021-1023 (2016)

www.sirteq.org

Cavity polaritons – Quantum Simulation with open quantum systems

Lateral structuration:

F. Baboux et al., Phys. Rev. Lett. 116, 066402 (2016)

Easy detection

Bulk: superfluidity

Ile-de-France is a **world leader** C2N, LKB, MPQ

Highlights

www.sirteq.org

structured 2D quantum gas (LKB)

Cold atoms – Quantum Simulation highly controllable quantum systems

Versatile and controllable systems:

- Control of the sign and magnitude of **interaction**
- Control of **trapping** parameters and **dimensionality**
- Periodic potentials, « optical lattices »
- Effective **magnetic field** (gauge fields)
- Time dependent phenomena: out of equilibrium situations in 3D, 2D,1D
- Simplicity of detection

Quantitative Comparison with mean-field and quantum Many-Body theories:
Gross-Pitaevskii, Bose and Fermi Hubbard models,
search for exotic phases, dipolar gases,
disorder effects, Anderson localization, ...

See talk by Laurent Sanchez Palencia

LPTM Cergy, LPL, LKB, LPS-ENS, LMPQ, LPTMC, Collège de France, LAC, CPhT, LCF, IPCMS, ENS-Lyon, LPTMS + GDR Atomes froids

