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- What it is good for ?  
- Is it working ? - How much details do I need to know ? 

- How could I encode my computation ?
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 Simulation:                   Validation 

 Communications:                 Adversarial detection

 Computations:                 Correctness



Quantum Era

Quantum Machines

National Investments

Europe 1bn€
UK 270M £
Netherlands 80M $
US, Singapore,Canada

Private Investments

Google, IBM, Intel
Big VC founds
Startups Companies: D-Wave

5



Quantum Era

Quantum Machines

National Investments

Europe 1bn€
UK 270M £
Netherlands 80M $
US, Singapore,Canada

Private Investments

Google, IBM, Intel
Big VC founds
Startups Companies: D-Wave

5



Quantum Era

Quantum Machines

National Investments

Europe 1bn€
UK 270M £
Netherlands 80M $
US, Singapore,Canada

Private Investments

Google, IBM, Intel
Big VC founds
Startups Companies: D-Wave

 Target: > 50 qubits Device

5



Quantum Era

Quantum Machines

National Investments

Europe 1bn€
UK 270M £
Netherlands 80M $
US, Singapore,Canada

Private Investments

Google, IBM, Intel
Big VC founds
Startups Companies: D-Wave

 Target: > 50 qubits Device

 Feature: Not Simulatable Classically

5



Quantum Era

Quantum Machines

National Investments

Europe 1bn€
UK 270M £
Netherlands 80M $
US, Singapore,Canada

Private Investments

Google, IBM, Intel
Big VC founds
Startups Companies: D-Wave

 Target: > 50 qubits Device

 Feature: Not Simulatable Classically

 Problem: Testing, Validation, BenchMarking, Certification, Verification …

5



Quantum Era

Quantum Machines

National Investments

Europe 1bn€
UK 270M £
Netherlands 80M $
US, Singapore,Canada

Private Investments

Google, IBM, Intel
Big VC founds
Startups Companies: D-Wave

 Target: > 50 qubits Device

 Feature: Not Simulatable Classically

 Problem: Testing, Validation, BenchMarking, Certification, Verification …

5

We can BOOTSTRAP a smaller quantum device to test a bigger one
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Verification of quantum computation: 
An overview of existing approaches
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Measurement-based classical computation

Janet Anders∗1 and Dan E. Browne†1

1Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, United Kingdom.

(Dated: May 8, 2008)

We study the intrinsic computational power of entangled states exploited in measurement-based
quantum computation. By focussing on the power of the classical computer that controls the mea-
surements, we develop a classification of computational resource power, leading naturally to a notion
of resource states for measurement-based classical computation. Surprisingly, the Greenberger-
Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge naturally as optimal examples.
Our work exposes an intriguing relationship between the violation of local realistic models and the
computational power of entangled resource states.

PACS numbers: 03.67.Lx, 03.65.Ud

Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational

∗janet@qipc.org
†d.browne@ucl.ac.uk

resource state

control computer

measurement

sites

FIG. 1: The control computer provides one bit of classical
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power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
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We study the intrinsic computational power of entangled states exploited in measurement-based
quantum computation. By focussing on the power of the classical computer that controls the mea-
surements, we develop a classification of computational resource power, leading naturally to a notion
of resource states for measurement-based classical computation. Surprisingly, the Greenberger-
Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge naturally as optimal examples.
Our work exposes an intriguing relationship between the violation of local realistic models and the
computational power of entangled resource states.
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Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational
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such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
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tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational
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power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
bit in return. It is emphasized that we place no restric-
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Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational
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power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
bit in return. It is emphasized that we place no restric-
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quantum computation. By focussing on the power of the classical computer that controls the mea-
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Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge naturally as optimal examples.
Our work exposes an intriguing relationship between the violation of local realistic models and the
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Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational
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source state) determining the choice of measurement basis.
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ward arrow), such as the outcome of the binary measurement,
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power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
bit in return. It is emphasized that we place no restric-
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Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational
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power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
bit in return. It is emphasized that we place no restric-
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Trust Worthy Quantum Information TyQi17 Paris 

- It exists

- It is expanding

- The overhead depends on the level of trust

Single server price of trust

Protocols: [Gheorghiu, Kashefi, Wallden ’15], [Hajdušek,
Pérez-Delgado, Fitzsimons ’15], [Gheorghiu, Wallden, Kashefi ’15]

aaaaaaaaaaa
Measurements

Entanglement

Trusted
Semi-trusted

(i.i.d.)
Untrusted

Trusted O(N) O(N4logN) O(N13log(N))
Untrusted O(N4logN) O(N4logN) O(N64)

Bounds are not tight!

Assuming untrusted entanglement...

Untrusted measurements ! device independence

Trusted measurements ! one-sided device independence

Elham Kashefi (joint work with A. Gheorghiu and P. Walden) Price of Trust
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• Certify the machine is capable of computing IQP 
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FIG. 4: Schematic of a quantum computation with verification sub-routines.

Whereas the laws of physics have been tested in vari-
ous limits - small or large scales, high or low energies -
the boundary of high computational complexity is mostly
unexplored. So, it is even imaginable that quantum
mechanics might break down at some scale of complex-
ity [22].

On the experimental side, current quantum comput-
ers [23] are limited to the processing of a few qubits,
which does not allow yet to solve problems which are in-
tractable using classical computers. In the future when
large-scale quantum computers might be available [24–
27], the verification of quantum computations and quan-
tum simulations will be a crucial task [28].

Thus, our demonstration might have implications for
new quantum computing experiments as well as on the
foundations of quantum physics.

Add Caslav’s statement: In our implementation, we
assume the correctness of quantum mechanics for
the verification of quantum resources. Without this
assumption, a full demonstration would require the
two entangled photons to be sent far apart from each
other in two distant laboratories of the prover where
only in the very last instant of the computation the
verifier gives the measurement instructions to the
prover. By this means, no classical computers could
mimic the output of the computation.
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large-scale quantum computers might be available [24–
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tum simulations will be a crucial task [28].
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new quantum computing experiments as well as on the
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Add Caslav’s statement: In our implementation, we
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NQIT: Photon/Ion Traps

Simulator of Quantum Computing
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