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.- How could | encode my computation ?
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Sensors and Metrology:

Simulation:

Communications:

Computations:

Certification of Enhancement

Validation

Adversarial detection

Correctness
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We can BOOTSTRAP a smaller quantum device to test a bigger one
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How to deal with deviation

(0 000) T (Pt B) < €)

(2

Different toolkits / Different tasks / Different witness /
Different properties / Different assumptions / .....

Hypothesis Test, Certification, Self Testing, Entanglement detection,
Quantum signature, Proof System, Hardware Testing, Post-hoc verification,
Randomised benchmarking, Authentication, Blind Verification
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QEve,system
arxXiv:1709.06984

Verification of quantum computation:
An overview of existing approaches

Alexandru Gheorghiu, Theodoros Kapourniotis, Elham Kashefi
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Classically-controlled QC

MBQC - Cluster State - Gate Teleportation

Program is encoded in the controlcomputer
classical control computer
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Computation Power is encoded in
the quantum entanglement
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Universal Blind Quantum Computing: QKD + Teleportation

Broadbent, Fitzsimons and Kashefi, FOCS09
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Verifiable Universal Blind Quantum Computing: QKD + Teleportation + Test

Aharonov, Ben-Or, and Eban, ICS 2010
Fitzsimons and Kashefi, 2012



Photonic Implement

S. Barz, E. Kashefi, A. Broadbent, J. Fitzsimons, A. Zeilinger, P Walther
Science 2012
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Hybrid Architecture

arXiv:1611.10107

Private quantum computation:
An introduction to blind quantum computing

Joseph F. Fitzsimons
U U
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Global Directions on Verification

via Hiding : Cloud-based Crypto App  Distributed Network

- EPSRC UK

- NRF Singapore
- USAirforce
- EU QFlagship

via Proof System : Quantum Simulation

- Number Crunching

- Noise Handling
- Architecture Adaptation
- New Methods Development

via Hypothesis Testing : Bench Marking Quantum Supremacy
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- It exists
- It is expanding

Trust Worthy Quantum Information TyQi17 Paris

- The overhead depends on the level of trust

Entanglement

Semi-trusted

Trusted (iid) Untrusted
Measurements o
Trusted O(N) O(N*logN) | O(N*3log(N))
Untrusted O(N*logN) | O(N*logN) | O(N®%)
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Verification Status

Robust and Efficient Fault Tolerant Verification of
various architectures is possible
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- uniform platform versus tailored made

Standardisation 7?7 Given the unknown nature of the emerging devices

- Academic versus Industry’s need

Objective improvements
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IVeriQloud spinoff of LIP#|
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Computational Problem Quantum Hardware Verification Technique
Boson Sampling Photonics Hardware Noise Certification
IQP Cold Atoms Blind Verification
Randomised Circuit Superconducting Hypothesis Test

Trace Estimation NMR Blind Verification
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Instantaneous quantum, poly-time machine

Only use two qubit commuting gates

CIassmaI/Q uantum
g communication

« Almost Classical Verifier

- Certify the machine is capable of computing IQP
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IQP Hypothesis Test - Theory

Theory Step 1

If IQP computation was classically simulatable then PH collapses

Theory Step 2

Hide Test Round among the Sampling Round

Verifier
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NQIT: Photon/lon Traps

Noise Model

l

Simulator of Quantum Computing
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HT is very fragile
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