Verification of Quantum Computing

Elham Kashefi

University of Edinburgh CNRS, Pierre and Marie Curie University

Oxford Quantum Technology Hub Paris Centre for Quantum Computing

Quantum Software Mission

Develop knowledge and expertise for science, technology and business

to evaluate and program today's quantum devices

so we can effectively exploit tomorrow's

Quantum Software Mission

Develop knowledge and expertise for science, technology and business

to evaluate and program today's quantum devices

so we can effectively exploit tomorrow's

What it is good for ?Is it working ?

Quantum Software Mission

Develop knowledge and expertise for science, technology and business

Sensors and Metrology:

Certification of Enhancement

Sensors and Metrology:

Certification of Enhancement

Simulation:	Validation
-------------	------------

Sensors and Metrology:

Certification of Enhancement

Simulation:	Validation

Communications: Adversarial detection

Sensors and Metrology:

Certification of Enhancement

	Simulation:	Validation
--	-------------	------------

Communications: Adversarial detection

Computations:	Correctness

National Investments

Europe 1bn€ UK 270M £ Netherlands 80M \$ US, Singapore,Canada

Quantum Machines

Private Investments

Google, IBM, Intel Big VC founds Startups Companies: D-Wave

We can BOOTSTRAP a smaller quantum device to test a bigger one

A mechanism that when witness is accepted the outcome is good

A mechanism that when witness is accepted the outcome is good

A mechanism that when witness is accepted the outcome is not bad

A mechanism that when witness is accepted the outcome is good

A mechanism that when witness is accepted the outcome is **not bad**

A mechanism that **probability** of witness is accepted and the outcome is **bad is bounded**

A mechanism that prob of witness is acc and outcome is bad is bounded

density operator of classical and quantum output

A mechanism that prob of witness is acc and outcome is bad is bounded

density operator of classical and quantum output

$$P_{incorrect}^{\nu} := P_{\perp} \otimes |acc\rangle \langle acc |$$

$$\sum_{\nu} p(\nu) \ Tr\left(P_{incorrect}^{\nu} B(\nu)\right) \le \epsilon$$

What is the challenge

$$\sum_{\nu} p(\nu) \ Tr\left(P_{incorrect}^{\nu} B(\nu)\right) \le \epsilon$$

What is the challenge

$$P_{incorrect}^{\nu} := P_{\perp} \otimes |acc\rangle \langle acc|$$

$$\sum_{\nu} p(\nu) Tr(P_{incorrect}^{\nu} B(\nu)) \le \epsilon$$

What is the challenge

$$\sum_{\nu} p(\nu) Tr(P_{inco}^{\nu} rect (P_{inco}^{\nu})) \leq \epsilon$$

How to deal with deviation

$$\sum_{\nu} p(\nu) Tr(P_{incorrect}^{\nu} B(\nu)) \le \epsilon$$

How to deal with deviation

$$\sum_{\nu} p(\nu) Tr(P_{incorrect}^{\nu} B(\nu)) \le \epsilon$$

Different toolkits / Different tasks / Different witness / Different properties / Different assumptions /

How to deal with deviation

$$\sum_{\nu} p(\nu) Tr(P_{incorrect}^{\nu} B(\nu)) \le \epsilon$$

Different toolkits / Different tasks / Different witness / Different properties / Different assumptions /

Hypothesis Test, Certification, Self Testing, Entanglement detection, Quantum signature, Proof System, Hardware Testing, Post-hoc verification, Randomised benchmarking, Authentication, Blind Verification

Practical Protocols with No assumptions whatsoever

 $\Omega_{Eve,system}$

arXiv:1709.06984

Verification of quantum computation: An overview of existing approaches

Alexandru Gheorghiu, Theodoros Kapourniotis, Elham Kashefi

 $\sigma_{testsubspace}$

Practical Protocols with No assumptions whatsoever

Classically-controlled QC

MBQC - Cluster State - Gate Teleportation

Server learns nothing about client's input/output/function

Unconditionally Secure Quantum Cloud in Theory

Broadbent, Fitzsimons and Kashefi, FOCS09

Unconditionally Secure Quantum Cloud in Theory

Universal Blind Quantum Computing: QKD + Teleportation

Verifiable Quantum Cloud in Theory

Aharonov, Ben-Or, and Eban, ICS 2010 Fitzsimons and Kashefi, 2012

Verifiable Quantum Cloud in Theory

Verifiable Universal Blind Quantum Computing: QKD + Teleportation + Test

Aharonov, Ben-Or, and Eban, ICS 2010 Fitzsimons and Kashefi, 2012

Photonic Implement

S. Barz, E. Kashefi, A. Broadbent, J. Fitzsimons, A. Zeilinger, P. Walther Science 2012

Hybrid Architecture

Hybrid Architecture

via Hiding : Cloud-based Crypto App Distributed Network

via Hiding : Cloud-based Crypto App Distributed Network

via Proof System : Quantum Simulation

via Hiding : Cloud-based Crypto App Distributed Network

via Proof System : Quantum Simulation

via Hypothesis Testing: Bench Marking Quantum Supremacy

via Hypothesis Testing : Bench Marking Quantum Supremacy

via Hypothesis Testing : Bench Marking Quantum Supremacy

-

-

-

It existsIt is expanding

Trust Worthy Quantum Information TyQi17 Paris

It exists
It is expanding

Trust Worthy Quantum Information TyQi17 Paris

- The overhead depends on the level of trust

Entanglement Measurements	Trusted	Semi-trusted (i.i.d.)	Untrusted
Trusted	O(N)	$O(N^4 \log N)$	$O(N^{13}log(N))$
Untrusted	$O(N^4 \log N)$	$O(N^4 \log N)$	$O(N^{64})$

-

-

-

Robust and Efficient Fault Tolerant Verification of various architectures is possible

Verification Challenge

-

-

-

- uniform platform versus tailored made

Standardisation ??? Given the unknown nature of the emerging devices

- uniform platform versus tailored made

Standardisation ??? Given the unknown nature of the emerging devices

- Academic versus Industry's need

Objective improvements

- uniform platform versus tailored made

Standardisation ??? Given the unknown nature of the emerging devices

- Academic versus Industry's need

Objective improvements

VeriQloud spinoff of LIP6

Certifiable Quantum Advantage

Certifiable Quantum Advantage

Computational Problem

Quantum Hardware

Verification Technique

Certifiable Quantum Advantage

Computational ProblemQuantum HardwareVerification Technique

Certifiable Quantum Advantage

Boson Sampling	Photonics Hardware	Noise Certification
IQP	Cold Atoms	Blind Verification

Certifiable Quantum Advantage

Computational ProblemQuantum HardwareVerification Technique

Photonics Hardware	Noise Certification
Cold Atoms	Blind Verification
Superconducting	Hypothesis Test
	Photonics Hardware Cold Atoms Superconducting

Certifiable Quantum Advantage

Computational ProblemQuantum HardwareVerification Technique

Boson Sampling	Photonics Hardware	Noise Certification
IQP	Cold Atoms	Blind Verification
Randomised Circuit	Superconducting	Hypothesis Test
Trace Estimation	NMR	Blind Verification

Instantaneous quantum poly-time machine

Instantaneous quantum poly-time machine

Instantaneous quantum poly-time machine

- Almost Classical Verifier
- Certify the machine is capable of computing IQP

Theory Step 1

If IQP computation was classically simulatable then PH collapses

Theory Step 1

If IQP computation was classically simulatable then PH collapses

Theory Step 2

Hide Test Round among the Sampling Round

Hide Test Round among the Sampling Round

HT is very fragile

Where we stand

The Edinburgh-Paris Team

Other collaborators

Theory

Damian Markham (LIP6) Joe Fitzsimons (SUTD) Anna Pappa (UCL) Anne Broadbent (Ottawa) Vedran Dunjko (Innsbruck) Anthony Leverrier (INREA) Animesh Datta (Warwick) Theodoros Kapourniotis (Warwick)

Experiment

Stefanie Barz (Vienna,Oxford) Philip Walther (Vienna) Ian Walmsley (Oxford)

Other collaborators

Theory

Damian Markham (LIP6) Joe Fitzsimons (SUTD) Anna Pappa (UCL) Anne Broadbent (Ottawa) Vedran Dunjko (Innsbruck) Anthony Leverrier (INREA) Animesh Datta (Warwick) Theodoros Kapourniotis (Warwick)

Experiment

Stefanie Barz (Vienna,Oxford) Philip Walther (Vienna) Ian Walmsley (Oxford)

Engineering and Physical Sciences Research Council

